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The present paper supplements and formulates in a more rigorous form, the sta- 

tement of the problem on stability of processes over a specified time interval, 

which was given in /l, 2/. The refinement concerns the case in which the spe- 
cified time interval is finite, and we find that an imposition of stronger con- 

straints on the region of limiting deviations becomes necessary. As far as the 

character of the constraints imposed on the perturbations of me parameters of 
the process is concerned, the proposed formulation and the initial formulation 

are both related to /3/. We use the fact that a linear differential system can be 
transformed into a diagonal one, as the basis for establishing the necessary and 

sufficient conditions of stability of a linear process, and for obtaining certain 

conditions of stability and instability of a nonlinear process in the linear appro- 

ximation. We show how transformation of a linear system to a “nearly” diago- 

nal system can be utilized for the same purpose. 

l.Choica of the region of limiting deviationc.we introduce the region 

of limiting deviations using the class K‘$ of ( n X n)-matrices G (t) = (GIG,. . - 
G,) over the field of complex numbers, satisfying the following conditions on the inter- 

val A = ito, T), where T is a number greater than t,,, or 00 : det G (t) # 0 and 
the Hermitian norm of the columns Gi (t) (j =I, 2,. . ., n) coincides with a positive 

function 0 (t), i.e. 11 Gj (t) 11 = 1/ (Gj, Gj) = o (t). 
The region of limiting deviations is defined as follows: 
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(G-l (t) x, C-’ (t) x) < p2, C (t) E h’“, (1.1) 

Here CC is a column matrix of the deviations zl, x2, . . ., 5, from the nominal values 

of the parameters characterizing the process under investigation, and Q is a positive 

number. The left-hand side of the relation (1.1) contains the Hermitian form of the 

coordinates Jo, x2, . . . , xnc,, which assumes real nonnegative values only for any value 

of J: . Geometrically, the relation (1.1) represents, for each fixed t in the ICY, x2,. . ., 
x,, -coordinate space, an ?2-dimensional ellipsoid bounded by the surface 

(G-’ (t) 2, c-1 (t) x) = p2 (1.2) 

possessing the following properties : 
Each of the 2n rays x = + G, (t) s ((r = 1, 2,. . ., n; s > 0), where G, (a = 

1, 2,. . ., n) are columns ofthe matrix G, intersects the surface (1.2) once when the 

parameter s = p. The points of intersection of these rays with the surface (1.2) are 

situated at the distance p. = OP from the coordinate origin (x = 0) . 
Plane x _- Gisi + Gjsj (i # j) is generated by any pair of columns of the matrix 

G and it intersects the surface (1.2) along an ellipse defined by the equations 

II: = GiSi -j- cj:lj, Si? + sj2 =:- p’ (1.3) 

The rays Gisi and Gjsj are symmetric with respect to the principal axes of the ellipse 
(1.3) and directed along the diagonals of a rectangle the sides of which touch the ellipse (1.3) 
at its apexes -+I/, 1/;! (Gi & (Yj). The semiax.es of tie ellipsoid (1.2) are a i :- IG 
(i = 1, 2,. .I:, -- n), where pi are the eigenvalues of the Hermitian matrix G*G and () < 

ai ( J/ aof). Equation(l.2)defines,inthe(n+l)-dimensional x1, x2, . . . . ~;2 -coordi- 

nate space and time t , a tube (pm tube) each intersection of which with a hyperplane 

t =_ t* represents an ellipsoid with the properties indicated above. The orientatiion of 

the principal axes of this ellipsoid may vary arbitrarily with time, and the ellipsoid it- 

self may become deformed (i. e. the dimensions of its semiaxes may change) ; at the 

same time the distance between the coordinate origin and the points of intersection of 

all rays & G, (t) s with the surface of the ellipsoid assume strictly defined values, in 

particular when o = const , the distance remains unchanged. 

2. Definition,. The following definitions were given in /l, 21 for the regionof 

limiting deviations of the form (1.1) : 
Definition 1. If in a given class h’x a matrix G (t) exists such that for suffi- 

ciently small p > 0 any perturbation of the process,the initial value x0 = x (to) 
of which satisfies the condition 

F--l (to) ~01 G-’ (to) ~0) < P” 

on the interval A = [to, 7’) , satisfies the condition 

(G-’ (to) ~0, G-l (to) ~0) < p2 

then the unperturbed process is stable on the interval It,, ir’) , otherwise it is unstable. 
If we now consider the conditions of stability and instability of the solution z = 0 

on the interval [to, oa) in the linear approximation which follow from the formulation 
given above, as applied to the dynamic systems described by an equation of the form 
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dx/dt = U (t) x + h (t, x) (2.1) 

where II: is a column matrix of the perturbations, U is a square matrix of order n con- 
tinuous on [to, 7’) and h is a column matrix with the property 

h(t, 4 -30 for x-0 
II x II 

we find that in many aspects these conditions are analogous to the corresponding results 

of the Liapunov theory. In particular, when U = const and the real parts of all eigen- 

values of the matrix U are negative, then the trivial solution of Eq. (2.1) is stable ; if 

on the other hand at least one of the eigenvalues of U has a positive real part, then the 

solution is unstable. In general, the stability of the solution J zz 0 (on [to, m)) in the 
sense of Definition 1 implies the Liapunov stability, the converse however is not always 

true. 
Direct application of the concept of stability in the form given by Definition 1 leads, 

in the case of a finite interval (T< oo) to an unacceptable conclusion. Thus, when 

U = con& , the presence of even a single eigenvalue of U with a negative real part 
can represent a sufficient condition of stability of the solution x E 0 of (2.1) on a fi- 

nite interval, in the sense of Definition 1, irrespective of what the remaining eigenvalues 

are. This implies that the constraints imposed in Definition 1 on the region of limiting 

deviations which are natural in the case of an infinite time interval, must be supplemen- 

ted in the case of a finite time interval. In this connection we propose the following 

modification of Definition 1, which is preferable in the case of a finite time interval. 

Definition 2. If in a given class KS a matrix G (t) exists coinciding at the 

instant t = t, with a given constant matrix G,, of class KA”(‘“) and such that for a 
sufficiently small p > 0 an arbitrary perturbation ;2’ (t) of the process,the initial value 

50 = x (t,) of which satisfies the condition 

(G?x,, G,%) < p2 (2.3) 

on the interval A = it,, T) ,satisfies the condition 

(G-' (t)x, G-’ (t)x) < p2 

then the uperturbed process is stable on the interval ItO, T) , otherwise it is unstable. 

Below we give some of the conditions, in the sense of Definition 2, for the processes 

described by equations of the form (2.1). 

3, Linear oy~tema. Wehave 

dxldt = U (t)x (3.1) 

where U is a square matrix of order II continuous on [t,, T). Change of the variables 

3 = K (t) y, K (t) = X (t) Go2 (t) (z = ux, x (t,) = E) (3.2) 

where X is a solution of the matrix equation given in brackets, E is the unit matrix 

G, = (gl=', g;. . . g,") is a given constant matrix of class KA”(‘“) and 2 is a dia- 
gonal matrix continuously differentiable and nondegenerate on [to, T) , reduces (3.1) 
to the diagonal form (see /2/) 

dyldt = A (t)y, ,I (t) = diag (Al, 3L2, . . ., L> (3.3) 
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It can be stipulated here that all columns K, (o == 1, 2, . . . , n) of the matrix K 

have the same single Hermitian norm a (1), i. e. that 

1 K, (t) (1 = a (t) > 0, G--1,2, . . . . n 

Then 2 and A are given by the following formulas : 

2 = a(t)diag 
pt 

,,xglo,, , . . ., 

where ej (j = 1, 2, . . ., n) are arbitrary continuously differentiable real scalar 

functions. 
In what follows we shall assume 0, 3 0 (j = 1, 2, . . ., n). It can easily be 

seen that in this case K (t,) = GO when a (t,) = w (to). When the matrix A’ (t) is 
chosen in this manner, the bundle of solutions of (3.1) satisfying the condition (2.3) is 

represented by the relation 

(H-t (t>x, H-’ (02) < p2, t E [to, T) (3.4) 

where H = (H,H, . . . H,) is a square matrix of order n, defined by the expression 

HH’ = K(t)exp (\zmt) K*(t) (3.5) 
to 

under the condition that all columns H, (0 = 1, 2, . . ., n) have the same single 

norm 0s (t) for each t . The matrix G (t) = (O (t)/oo (t))H obviously belongs to 

the class Kx. The corresponding &,,- tube 

(G-l (t)z, G-’ (t)z) = p2 (3.6) 

is characterized by the fact that each of its cross sections t = t* is an ellipsoid simi- 

lar to the ellipsoid 
(H-r (t)x, H-’ (t)x) :-- p2 (3.7) 

and the directions of the principal axes of the ellipsoids (3.6) and (3.7) in the x1, 52, 
. . ., xn:n-coordinate space coincide. We shall call this p,-,tube an “associated” tube 

in the sense defined above. 
When t = t, we have H (to) = K (t,) -: G,,, and at this instant the associated 

&,-tube coincides with the envelope of the bundle of solutions (3.4). The surfaces (3.6) 
and (3.7) coincide also at the values of t for which oO (t) = w (t). When oO (t) < 
o (t) , the ellipsoid (3.7) is found to be wholly contained within the ellipsoid (3.6), 

conversely when 0s (t) > o (t), then the ellipsoid (3.6) is contained within the ellip- 
soid (3.7). It follows that when oO (t) < w (t) all solutions of the linear system be- 
longing to the bundle (3.4) fall within the confinements of the associated p‘,,- tube. If 
on the other hand w,, (t) ,> o (t), then some of the solutions belonging to the bundle 
(3.4) will invariably pass outside the limits of the associated &-tube. It can be shown 
that when, o,, (t) > w (t) and we replace the associated &-tube by any other po-tube, 
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some of the solutions belonging to the bundle (3.4), i. e. the solutions of the linear sys- 

tem which were situated inside or on the surface of the ellipsoid (2.3) at the initial in- 
stant of time t, , will always be found outside this tube. From all this follows 

Theorem 3.1. The necessary and sufficient conditions of stability of the trivial 

solution of the linear system (3.1) is, that 

00 (r) 6 0 (Q> fiT t 65 It,, .q 

The Hermitian norm of the columns of thematrix H is given by the relation 

wss (t) S 11 H,(t) /p = + i: exp I&k? (f) (1 - Ql a2 ta s=i,2,...,ra 
a=1 

Pa(t) = &-\Reh.(t)dt 
to 

Taking this into account, we can formulate a number of simpler conditions of stability 

and instability of an unperturbed process, 
Corollaries. 1”. Let 

a (0 < 0 (a p @) < 0 (p (4 = mapa (t)) 

on the interval It,, T) . Then the unperturbed process (solution of (3.1)) is stable on 

Ito, T>- 
2” . If at any point 1 e It,, T) 

then the unperturbed process (solution of (3.1)) is unstable on It,, 2’). 

We shall call the unperturbed process asymptotically stable on [a, 00) if it is stable 

on (a, MI) (in the sense of Definition 2) and if for any t, E [a, 00) there exists p = 

p (to) > 0 such that all per~rbatio~ z (t) of the process satisfying the condition (2.3) 

have the property lim 11 5 (t) I/ = 0 as t + 00. 
3O. Let 

cz (t) < 0 (0, P (r) < --b, b =: con& > 0 

on the interval It,, ce) . Then the unperturbed process (solution of (3.1)) is asympto- 
tically stable on [to, oo). 

4” . Let 
w(t) / a(t) < N, N = const > 0 

on the interval [to, OS) and, beginning from some t* > EO, let 

P 0) > b, b =: const > 0 

Then the unperturbed process (solution of (3.1)) is unstable on [to* 00). 
Example. Consider a linear system with constant coefficients (U = const). Let 

for simplicity U be a matrix of simple structure, with eigenvalues v,, v2, . . . vn (not 
necessarily all different) and the corresponding eigenvectors ?I. y2, . . ., yn_ In this 
case the fundamental matrix of the linear equation (3.1) has the form 
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n 

X = 2 exp [yj (t - to)] Pj 

j=1 

where Pj is the matrix of the orthogonal projection of the ~-dimensional space R onto 

the subspace Hj generated by the eigenvector yj. In accordance with this we have 

PO (t) = -;i- 

n 

to In 
{II 

2 esp [Ye (1 - i0)] Pjgoo 
Ill I cf. (9 

i=l 
It is clear from the last expression that the stability or instability of the process de- 

pends on vi as well as on the prescribed G, and o (t) (the function o (t) restricts the 

choice of the function tl (b)). Here we shall only consider the simplest case in which 

G, = (YIY~ . . . %J. We also have 

Assuming that o (t) is a differentiable function, we set OL (t) z w (t). Then the unper- 

turbed process will be stable on lto, 1’) if 
1 

max, He y, + t In 
Ql (fo) 

-Go 

asymptotically stable on [to, 00) if 

1 
max, Re Y, + t-_10 In +$+<-b 

and unstable on [to, T) if 

exp [2 (t - to) Re ~~1 > oz(t) 
o=r a2 (to) 

4, N 0 n 1 i n a a r I y it a m I, Stability on a finite interval in the linear approxima- 

tion. We consider a nonlinear process represented by a trivial solution x zz 0 of (2.1). 

We can assume without loss of generality that in the case of T < co the matrix K 

of the transformation of the linear approximation (i.e. of (3.1)) is nondegenerate and 

differentiable, by virtue of (3.3), on a closed interval [to, T]. 
Remembering that H is, as before, a matrix appearing in the relation (3.4), we intro- 

duce the function 
v(t, z) = %(P (t) t, H-1 (t) z) 

The equation v (t, z) = p2 represents the associated tube, since H O/O~ E Kz. 

Taking into account (3.5) and carrying out the change of variables defined by (3.2), 
we obtain !t 

v(t, 2) = * (exp [- \ZReAdt]y, y) (4.1) 

From (2.1) we find 
to 

t 

Y = 1 V) (S 
‘+!$.dt~ +y(tO)), M= K-l, I(t) = -pjAdf (4.2) 

Substituting (4.2) intot0(4. 1) yields 
to 

v (t, X) = *v (to, JrJ) [1 + 41 (t, !,/)I (4.3) 

where 
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3y virtue of the condition (2.2) and the nondegeneracy of the matrix K we have, onthe 

closed interval [to, T] 
*(t, y)30 when y-> 0 (4.4) 

The relations (4.3) and (4.4) enable us to formulate the following theorems : 

Theorem 4.1. If 00 (t) < 0 (t> with Vtrt E [to, Tl (T < co), then the un- 

perturbed process (trivial solution of (2.1)) is stable on the finite interval It,, T). 

Theorem 4.2. If 0s (2) > 0 (5) at any point S E its, T), then the unper- 

turbed process (trivial solution of (2.1) ) is not stable on the interval ]C,, 2’). 

6. The conditions of stability given above are based on the feasibility of transform- 

ing the linear system (3.1) to its diagonal form (3.3). However, the matrix of such trans- 
formation contains the basic matrix x {see (3.2) ) as a multiplier, and an exact expres- 

sion cannot always be obtained for the latter matrix in a finite form. In this connection 

it is advisable to construct the conditions of stability using a transformation converting 
the linear system to a system nearly diagonal. Methods of constructing matrices of such 

transformations are well known. 

Let us introduce the manix 

G (t) = Zi (t) I (t) M. G,I-’ (t) Q t&f,, = M (to)) 

Here K is a square matrix of order n, nondegenerate and differentiable on [to, T] , A 
is a diagonal matrix with diagonal elements hi, hs, . . ., &,,, the above matrices con- 

nected with each other and with another manix N by the relation d~/dt = UK- KA+ 

N; S‘l is a normal~~g diagonal matrix ensuring that the conditions iI Gi (t) \I = cx (t) > 

0, i =: 1, 2, . . ., n (Gi denote the columns of the matrix G) hold, and 62 (t,) is a unit 

matrix. We then have 

Theorem 5. 1. Let 1’ 

C1(1)<U((t), -& fuo(t’)+ v,,,@‘)ldt’f--b 
5 
to 

hold on the interval [to, 2’ < co) . Here no (t) is the real part of the eigenvalue of the 

diagonal matrix A - 51-i dQ/dr, at which it assumes its maximum value and vmaX (t) 

is the largest eigenvalue of the Hermitian matrix 

P c= - l/z (G-U’MG + C*M*N*G*-‘) 

Then the unperturbed process (trival solution of (2.1)) will be stable on the interval 
[t,, 2’). The proof is analogous to that of Theorem 6.3 of /2/. 
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